Sciences guide For use from September 2014/January 2015 ## Alignment of objectives and assessment criteria In the MYP, assessment is closely aligned with the written and taught curriculum. Each strand from MYP sciences has a corresponding strand in the assessment criteria for this subject group. Figure 5 illustrates this alignment and the increasingly complex demands for student performance at higher achievement levels. | | Achievement
level | Level descriptor | |---|----------------------|---| | C Processing and evaluating | 0 | The student does not reach a standard identified by any of the descriptors below. | | At the end of year 5, students should | 1-2
3-4 | The student is able to: | | be able to: I. present collected and transformed data ii. interpret data and explain results using scientific reasoning iii. evaluate the validity of a hypothesis based on the outcome of the scientific investigation iv. evaluate the validity of the method v. explain improvements or extensions to the method. | | i. collect and present data in numerical and/or visual forms ii. Interpret data iii. state the validity of a hypothesis based on the outcome of a scientific investigation iv. state the validity of the method based on the outcome of a scientific investigation v. state improvements or extensions to the method. The student is able to: i. correctly collect and present data in numerical and/or visual forms ii. accurately interpret data and explain results iii. outline the validity of a hypothesis based on the outcome of a scientific investigation iv. outline the validity of the method based on the outcome of a scientific investigation v. outline improvements or extensions to the method that would benefit the scientific investigation. The student is able to: i. correctly collect, organize and present data in numerical and/or visual forms ii. accurately interpret data and explain results using scientific reasoning iii. discuss the validity of a hypothesis based on the outcome of a scientific investigation | | | 7-8 | iv. discuss the validity of the method based on the outcome of a scientific investigation v. describe improvements or extensions to the method that would benefit the scientific investigation. The student is able to: L. correctly collect, organize, transform and present data in numerical and/or visual forms ii. accurately interpret data and explain results using correct scientific reasoning iii. evaluate the validity of a hypothesis based on the outcome of a scientific investigation iv. evaluate the validity of the method based on the outcome of a scientific investigation v. explain improvements or extensions to the method that would benefit the scientific investigation | Figure 5 Sciences objectives and criteria alignment ### Sciences assessment criteria: Year 1 ### Criterion A: Knowing and understanding #### Maximum: 8 32 At the end of year 1, students should be able to: - outline scientific knowledge - apply scientific knowledge and understanding to solve problems set in familiar situations and suggest solutions to problems set in unfamiliar situations - interpret information to make scientifically supported judgments. iii. | Achievement
level | Level descriptor | |----------------------|---| | 0 | The student does not reach a standard described by any of the descriptors below. | | 1–2 | The student is able to: select scientific knowledge select scientific knowledge and understanding to suggest solutions to problems set in familiar situations apply information to make judgments, with limited success. | | 3–4 | The student is able to: recall scientific knowledge apply scientific knowledge and understanding to suggest solutions to problems set in familiar situations apply information to make judgments. | | 5–6 | The student is able to: state scientific knowledge apply scientific knowledge and understanding to solve problems set in familiar situations apply information to make scientifically supported judgments. | | 7–8 | The student is able to: outline scientific knowledge apply scientific knowledge and understanding to solve problems set in familiar situations and suggest solutions to problems set in unfamiliar situations iii. interpret information to make scientifically supported judgments. | ## Criterion B: Inquiring and designing #### Maximum: 8 At the end of year 1, students should be able to: - i. outline an appropriate problem or research question to be tested by a scientific investigation - ii. outline a testable prediction using scientific reasoning - iii. outline how to manipulate the variables, and outline how data will be collected - iv. design scientific investigations. | Achievement
level | Level descriptor | |----------------------|--| | 0 | The student does not reach a standard described by any of the descriptors below. | | 1–2 | The student is able to: i. select a problem or question to be tested by a scientific investigation ii. select a testable prediction iii. state a variable iv. design a method with limited success. | | 3–4 | i. state a problem or question to be tested by a scientific investigation ii. state a testable prediction iii. state how to manipulate the variables, and state how data will be collected iv. design a safe method in which he or she selects materials and equipment. | | 5–6 | The student is able to: state a problem or question to be tested by a scientific investigation outline a testable prediction outline how to manipulate the variables, and state how relevant data will be collected design a complete and safe method in which he or she selects appropriate materials and equipment. | | 7–8 | The student is able to: outline a problem or question to be tested by a scientific investigation outline a testable prediction using scientific reasoning outline how to manipulate the variables, and outline how sufficient, relevant data will be collected design a logical, complete and safe method in which he or she selects appropriate materials and equipment. | ## Criterion C: Processing and evaluating #### Maximum: 8 At the end of year 1, students should be able to: - present collected and transformed data - interpret data and outline results using scientific reasoning ii. - iii. discuss the validity of a prediction based on the outcome of the scientific investigation - discuss the validity of the method - describe improvements or extensions to the method. ٧. | Achievement
level | Level descriptor | |----------------------|---| | 0 | The student does not reach a standard described by any of the descriptors below | | | The student is able to: | | | i. collect and present data in numerical and/or visual forms | | | ii. interpret data | | 1–2 | iii. state the validity of a prediction based on the outcome of a scientific investigation, with limited success | | | iv. state the validity of the method based on the outcome of a scientific investigation, with limited success | | | v. state improvements or extensions to the method that would benefit the scientific investigation, with limited success . | | | The student is able to: | | | i. correctly collect and present data in numerical and/or visual forms | | | ii. accurately interpret data and outline results | | 3–4 | iii. state the validity of a prediction based on the outcome of a scientific investigation | | | iv. state the validity of the method based on the outcome of a scientific investigation | | | v. state improvements or extensions to the method that would benefit t scientific investigation. | | | The student is able to: | | 5–6 | i. correctly collect, organize and present data in numerical and/or visu forms | | | ii. accurately interpret data and outline results using scientific reasoning | | | iii. outline the validity of a prediction based on the outcome of a scienti investigation | | | iv. outline the validity of the method based on the outcome of a scienti investigation | | | v. outline improvements or extensions to the method that would benefit the scientific investigation. | | Achievement
level | Level descriptor | | |----------------------|--|--| | | The student is able to: | | | | i. correctly collect, organize, transform and present data in numerical and/
or visual forms | | | | ii. accurately interpret data and outline results using correct scientific reasoning | | | 7–8 | iii. discuss the validity of a prediction based on the outcome of a scientific investigation | | | | iv. discuss the validity of the method based on the outcome of a scientific investigation | | | | v. describe improvements or extensions to the method that would benefit the scientific investigation. | | ### Criterion D: Reflecting on the impacts of science #### Maximum: 8 36 At the end of year 1, students should be able to: - summarize the ways in which science is applied and used to address a specific problem or issue - describe and summarize the various implications of using science and its application in solving a ii. specific problem or issue - iii. apply scientific language effectively - document the work of others and sources of information used. iv. | Achievement
level | Level descriptor | |----------------------|---| | 0 | The student does not reach a standard described by any of the descriptors below. | | | The student is able to, with limited success: | | | i. state the ways in which science is used to address a specific problem or issue | | 1–2 | ii. state the implications of using science to solve a specific problem or issue interacting with a factor | | | iii. apply scientific language to communicate understanding | | | iv. document sources. | | | The student is able to: | | | i. state the ways in which science is used to address a specific problem or issue | | 3–4 | ii. state the implications of using science to solve a specific problem or issue interacting with a factor | | | iii. sometimes apply scientific language to communicate understanding | | | iv. sometimes document sources correctly. | | | The student is able to: | | | i. outline the ways in which science is used to address a specific problem of issue | | 5–6 | ii. outline the implications of using science to solve a specific problem or issue interacting with a factor | | | iii. usually apply scientific language to communicate understanding clearl and precisely | | | iv. usually document sources correctly. | | | The student is able to: | | 7–8 | i. summarize the ways in which science is applied and used to address specific problem or issue | | | ii. describe and summarize the implications of using science and its application to solve a specific problem or issue, interacting with a factor | | | iii. consistently apply scientific language to communicate understandin clearly and precisely | | | iv. document sources completely . | ### Sciences assessment criteria: Year 3 ### Criterion A: Knowing and understanding #### Maximum: 8 At the end of year 3, students should be able to: - i. describe scientific knowledge - ii. apply scientific knowledge and understanding to solve problems set in familiar and unfamiliar situations - iii. analyse information to make scientifically supported judgments. | Achievement
level | Level descriptor | | |----------------------|---|--| | 0 | The student does not reach a standard indicated by any of the descriptors below. | | | 1–2 | The student is able to: recall scientific knowledge apply scientific knowledge and understanding to suggest solutions to problems set in familiar situations apply information to make judgments. | | | 3–4 | The student is able to: state scientific knowledge apply scientific knowledge and understanding to solve problems set in familiar situations apply information to make scientifically supported judgments. | | | 5–6 | The student is able to: outline scientific knowledge apply scientific knowledge and understanding to solve problems set in familiar situations and suggest solutions to problems set in unfamiliar situations iii. interpret information to make scientifically supported judgments. | | | 7–8 | The student is able to: describe scientific knowledge apply scientific knowledge and understanding to solve problems set in familiar and unfamiliar situations analyse information to make scientifically supported judgments. | | ### Criterion B: Inquiring and designing #### Maximum: 8 At the end of year 3, students should be able to: - describe a problem or question to be tested by a scientific investigation - ii. outline a testable hypothesis and explain it using scientific reasoning - describe how to manipulate the variables, and describe how data will be collected iii. - design scientific investigations. iv. | Achievement
level | Level descriptor | |----------------------|---| | 0 | The student does not reach a standard identified by any of the descriptors below. | | | The student is able to: | | | i. state a problem or question to be tested by a scientific investigation, wit limited success | | 1–2 | ii. state a testable hypothesis | | | iii. state the variables | | | iv. design a method, with limited success. | | | The student is able to: | | | i. state a problem or question to be tested by a scientific investigation | | 3–4 | ii. outline a testable hypothesis using scientific reasoning | | 3 1 | iii. outline how to manipulate the variables, and state how relevant data w be collected | | | iv. design a safe method in which he or she selects materials and equipmen | | | The student is able to: | | | i. outline a problem or question to be tested by a scientific investigation | | | ii. outline and explain a testable hypothesis using scientific reasoning | | 5–6 | iii. outline how to manipulate the variables, and outline how sufficien relevant data will be collected | | | iv. design a complete and safe method in which he or she selects appropriate materials and equipment. | | | The student is able to: | | 7–8 | i. describe a problem or question to be tested by a scientific investigation | | | ii. outline and explain a testable hypothesis using correct scientif reasoning | | | iii. describe how to manipulate the variables, and describe how sufficien relevant data will be collected | | | iv. design a logical, complete and safe method in which he or she select appropriate materials and equipment. | ## Criterion C: Processing and evaluating #### Maximum: 8 At the end of year 3, students should be able to: - i. present collected and transformed data - ii. interpret data and describe results using scientific reasoning - iii. discuss the validity of a hypothesis based on the outcome of the scientific investigation - iv. discuss the validity of the method - v. describe improvements or extensions to the method. | Achievement
level | Level descriptor | |----------------------|--| | 0 | The student does not reach a standard identified by any of the descriptors below | | | The student is able to: | | | i. collect and present data in numerical and/or visual forms | | | ii. accurately interpret data | | 1–2 | iii. state the validity of a hypothesis with limited reference to a scientifinvestigation | | | iv. state the validity of the method with limited reference to a scientific investigation | | | v. state limited improvements or extensions to the method. | | | The student is able to: | | | i. correctly collect and present data in numerical and/or visual forms | | | ii. accurately interpret data and describe results | | 3–4 | iii. state the validity of a hypothesis based on the outcome of a scientific investigation | | | iv. state the validity of the method based on the outcome of a scientific investigation | | | v. state improvements or extensions to the method that would benefit to scientific investigation. | | | The student is able to: | | 5–6 | i. correctly collect, organize and present data in numerical and/or visu forms | | | ii. accurately interpret data and describe results using scientific reasoning | | | iii. outline the validity of a hypothesis based on the outcome of a scientifinvestigation | | | iv. outline the validity of the method based on the outcome of a scientific investigation | | | v. outline improvements or extensions to the method that would benefit to scientific investigation. | | Achievement
level | Level descriptor | | |----------------------|--|--| | | The student is able to: | | | | i. correctly collect, organize, transform and present data in numerical and or visual forms | | | 7–8 | ii. accurately interpret data and describe results using correct scientific reasoning | | | | iii. discuss the validity of a hypothesis based on the outcome of a scientific investigation | | | | iv. discuss the validity of the method based on the outcome of a scientific investigation | | | | v. describe improvements or extensions to the method that would benefit the scientific investigation. | | ### Criterion D: Reflecting on the impacts of science #### Maximum: 8 At the end of year 3, students should be able to: - i. describe the ways in which science is applied and used to address a specific problem or issue - ii. discuss and analyse the various implications of using science and its application in solving a specific problem or issue - iii. apply scientific language effectively - iv. document the work of others and sources of information used. | Achievement
level | Level descriptor | | |----------------------|---|--| | 0 | The student does not reach a standard identified by any of the descriptors below. | | | | The student is able to: | | | | i. state the ways in which science is used to address a specific problem or issue | | | 1–2 | ii. state the implications of the use of science to solve a specific problem or issue, interacting with a factor | | | | iii. apply scientific language to communicate understanding but does so with limited success | | | | iv. document sources, with limited success. | | | | The student is able to: | | | | i. outline the ways in which science is used to address a specific problem or issue | | | 3–4 | ii. outline the implications of using science to solve a specific problem or issue, interacting with a factor | | | | iii. sometimes apply scientific language to communicate understanding | | | | iv. sometimes document sources correctly. | | | | The student is able to: | | | | i. summarize the ways in which science is applied and used to address a specific problem or issue | | | 5–6 | ii. describe the implications of using science and its application to solve a specific problem or issue, interacting with a factor | | | | iii. usually apply scientific language to communicate understanding clearly and precisely | | | | iv. usually document sources correctly . | | | Achievement
level | Level descriptor | | |----------------------|--|--| | | The student is able to: | | | | i. describe the ways in which science is applied and used to address a specific problem or issue | | | 7–8 | ii. discuss and analyse the implications of using science and its application to solve a specific problem or issue, interacting with a factor | | | | iii. consistently apply scientific language to communicate understanding clearly and precisely | | | | iv. document sources completely . | |